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The effects of uncertainties on the strength of a

single lap shear joint are explained. Probabilistic and

possibilistic methods are used to account for

uncertainties. Linear and geometrically nonlinear finite

element analyses are used in the studies. To evaluate

the strength of the joint, fracture in the adhesive and

maierial strength failure in the strap are considered.

The study shows that linear analyses yield conservative

predictions for failure loads. The possibilistic approach

for treating uncertainties appears to be viable for

preliminary design, but with several qualifications.

Introduction

In the final stages of the design of future advanced

aerospace vehicles, the design procedures need to

account for uncertainties by calculating the risk or

reliability. These calculations will involve probabilistic

analysis. While probabilistic methods may be required
in the final stages of design, methods that merely bound

a response quantity and provide the most likely value

may be adequate for early stages of design. Such

methods, referred to herein as possibilistic methods,

have the potential for allowing a large number of design

options to be evaluated rapidly during the conceptual

and preliminary design stages when there may be little

data and little need for precision.
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When compared with traditional factor-of-safety

methods, both probabilistic and possibilistic methods

require additional inputs but provide more and higher

quality outputs. Variables in these methods can be
classified as either certain or uncertain. For

probabilistic methods, the uncertain variables are

assumed to have a probability density function. In turn,

probabilistic methods provide a probability density

function for the response quantities. Similarly,

possibilistic methods require a membership function for

the uncertain parameters, and they provide a

membership function for the response quantities.

The general objective of this paper is to study the

differences between probabilistic and possibilistic

methods by exploring their application to a simple and

yet commonly encountered structural component. The

selected component is a single lap shear joint. The

specific objective of the paper is to study how

uncertainties affect the strength of a single lap shear
joint. The study considers two ways to account for

uncertainties (probabilistic and possibilistic), examines

the effect of a geometrically nonlinear analysis, shows

the effect of two failure modes (fracture in the adhesive

and material strength failure in the strap), and illustrates

several computational techniques.

Description of Problem

The single lap shear joint consists of lap and strap
adherends bonded with an adhesive as shown in

Figure 1. This configuration has been analyzed

extensively in References 1-5. The strap is subjected to

a tensile load F that is reacted at the x=0 plane. The

adhesive is assumed to contain a crack of length c

situated centrally within the adhesive. Boundary

conditions at the left end of the joint are u(0,y) = 0 and

v(0,0) = 0. These boundary conditions represent
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Figure I Single lap shear joint.

symmetry conditions. Boundary conditions at the right

end of the strap are u(liO; ) = constant and V(ll,0) = 0.

These boundary conditions correspond to zero rotation

of the face of the strap at the right end and approximate

the restraints provided by the grips in a testing machine.

Various configurational and material properties that

define the single lap shear joint analyzed in this paper

are given in Table 1. The lap and strap adherends are
taken to bc 2024 T3 aluminum.

The ABAQUS finite element structural analysis

program (Ref. 6) was used to analyze the joint. The
two-dimensional finite clement model of the joint

(Fig. 2) had 1692 plane strain, 8-node, biquadratic
elements (denoted CPE8) with 5331 nodes. These

CPE8 elements were used throughout the model,

including at and near the crack tip. Near the crack tip,
fine mesh modeling is used (Fig. 2(c)), and equal size

elements with aspect ratios I are maintained on either

side of the crack tip to facilitate strain energy release

rate calculations. Linear and geometrically nonlinear

analyses were carried out. The nonlinear analysis was

carried out to study the effects of eccentricity of the

loading and the resulting rotation of the joint.

Crack length c!

check

a) Overall model

b) Overall model with thickness enlarged to show finite
element mesh

ii'i ,
..... _ _ s_.

Crack Location

t )_ ! .4.

c) Detail near the crack tip

Figure 2. Finite element model of single lap shear joint.

Table 1. Values of quantities that define the single lap shear joint

Variable

Thickness, strap- in.

Thickness, lap - in.

Length, strap - in.

Length, tap - in.

Thickness, adhesive - in.

Length, crack - in.

Modulus, metallic adherends - psi

Symbol
Probabilistic Analysis

(normal distributions)

Mean
Standard
Deviation

0.005

0.005

O

0.16

0.0005

0.08

105,000

Possibilistic Analysis or=0

Lower
Bound

Poisson's ratio, metallic adherends

Modulus, adhesive - psi

Poisson's ratio, adhesive

Critical value of G (total) - in. Ib/in. 2

Yield stress 2024 T3 - psi
Crack Growth Increment - in.

It

t2

li

12

t,

C

E,.

0.125

0.125

12.0

10.0

0.0050

4.00

10,500,000

0

16,800

0

0.66

880

Vm

E.

v_

G,

CYyictd

0.3125

336,000

0.40

5.50

44,000

0.11

0.11

12

9.52

0.0035

3.76

10,185,0013

Ac 0.00125

0.3125

285,60(3

0.4

3.52

41,36(3

0.00125

Upper
Bound

0.14

0.14

12

10.48

0.0065

4.24

!0,815,000

0.3125

386,400

0.4

7.48

46,640

0.00125
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To studytheeffectof uncertainties,nineof the
quantitiesin TableI weretakento beindependent
randomvariableswithnormaldistributionsandwith
specifiedmeansandstandarddeviations.Twofailure
modeswereconsidered- fractureintheadhesivedueto
anexistingcrackandmaterialstrengthfailuredueto
yieldinginthestrap.

Analysis Approach

This section describes the two approaches that

were used to treat uncertainty and the two approaches
that were used to evaluate failure. Probabilistic and

possibilistic approaches were used to treat uncertainty.
The two failure modes that were used are fracture in the

adhesive caused by an existing crack and material

strength failure caused by yield in the strap.

Accounting for Unccrl_in6¢s

In the probabilistic approach for accounting for

uncertainties, nine quantities were assumed to be
random variables with normal distributions. The

random variables and their statistics are given in

Table I. With these nine random variables, Monte

Carlo simulations (Refs. 7, 8) were used to calculate thc

probability of failure of the joint for various values of

thc load F. (A brief description of the Monte Carlo

method is given in Appendix A.) Convergence of the

Monte Carlo calculations was evaluated by using 100,

1000, and 5000 trials and by comparing results from a
Monte Carlo simulation with results from a first order

reliability method (FORM, Ref. 7). The probabilistic

analysis code ProFES (Ref. 9) was used for all these
calculations.

In the possibilistic approach (Refs. 10, 11),

membership functions were assigned to the nine

random variables indicated in Table I. An example of

a membership function is shown in Figure 3. The

parameter o_ indicates the possibility of an uncertain

quantity taking on a given value. The objective is to

use the membcrship functions of the input parameters

(e.g., dimensions) to determine the corresponding

membership functions for the response quantities (e.g.,
stress, buckling load). Techniques for calculating with

membership functions are given in Reference 10. The

membership functions for the response quantities arc

then compared with the membership functions of the

allowable responses to determine the possibility of

failure. In this paper, the membership functions for the

nine random variables are taken to be isosceles triangles

with the most likely value (MLV in Fig. 3) equal to the

mean value given in Table I. The most likely value

corresponds to _ = 1.0. The absolute upper and lower

bounds tUB and LB in Fig. 3) are equal to the mean

value plus/minus three standard deviations. The

absolutc upper and lower bounds correspond to c_ = 0.0.

A brief discussion of membership functions together

with an example that illustrates techniques for

calculating with membership functions are presented in

Appendix B. Comparisons between probabilistic and

possibilistic methods are given in Reference 1 I.

O¢

1.0

0
LB MLV UB

Variable

Figure 3. Example of membership function.

Fracture in the Adhesive

The strain energy release rates for self-similar

crack growth are used to evaluate fracture in the

adhesive due to an existing crack. The evaluation

consists of calculating values of the total strain energy

release rate GT and comparing these values with the

experimentally determined value of the critical strain

energy rclease rate .Gc (Refs. 17, 18). Failure is

assumed to occur when the total strain energy release

rate is equal to or greater than the critical strain energy
release rate, i.e.,

G T > G C (t)

For this .joint configuration, the total strain energy
release rate G r is given by

G T = G I + GII (2)

where G I and GII are the strain energy release rates for

mode-/and mode-l/failures, respectively. The critical

energy release rate in equation (I) for mixed-mode

fracture is dependant on the mode-mixity (Refs. 17,

3
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18).Thecriticalenergyreleaserateusedin thispaper
is for FM-300adhesivetestedin mixed-mode
conditionswithamode-mixity,G t / Gtl = 0.3 (Rcf. 5).

The "virtual crack closure technique" (VCCT) is

used to evaluate G 1 and G H using the crack tip forces

and the opening and sliding displacements of the crack
faces (Refs. 12-16). Due to large rotations of the model

in the vicinity of the crack tip, a nonlinear formulation

of the VCCT that utilizes a local x'-y' systeln (see

Fig. 4) is used (Rcfs. 2, 15). The displacements of the

crack-tip node and the node ahead of the crack tip are
used to determine a local x' axis of the rotated

coordinate system. The expressions for G I and GI/ in

the local coordinate system can be written using the

notation shown in figure 4 as:

Gt =- I-LrY"(v;"-v""* )+ _( v'_-v;" )]2AcL_, (3)

, x )+x+,+)1il (4)

where

Ac is the crack growth increment, and is equal to the
width of the elements at the crack tip,

Xi, Yi are the nodal forces at node i evaluated using

the elements I and J in the x and y' directions

respectively,

X'),Yj are the nodal forces at node j evaluated using

the element I in the x' and y' directions respectively,
r !

ltm,ltnt,,Ul,Ul, are displacements in the x' direction at

nodes m,m*,l, and l* respectively, and

v'm, V'm,,V t, vt, are displacements in the y' direction at

* l*nodes m,m ,1, and respectively.

The values of the forces and displacements on the right

hand sides of equations (3) and (4) are extracted from a

finite element analysis.

Material Strength Failure in the Strap

Failure in the strap is assumed to occur when the

stress in the strap exceeds the yield stress of the

material. The stress was examined in the region

denoted "Stress Check" in Figure 2. That region does

not include the loaded end, where the boundary

conditions may cause local stress perturbations. In the

-AC-,.

"" _ l/-Crack

a) Undeformed shape

y', v'

b) Deformed shape

Figure 4. Model and notation used in virtual crack
closure technique.

region examined for stress failure, the bending stress is

small compared with the extensional stress. (For

example, by using a geometrically nonlinear finite

element analysis it was determined that the bending
stress is less than 1% of the extensional stress at x = 10

in., less than 2% at x= I1 in., and less than 6% at

x= 11.5 in. The load F is applied at x=12 in.)

Therefore, after setting to unity the depth of the strap,

the stress ax is taken to be

F
a x = -- (5)

tt

Note that the calculation of a, does not require a finite

element analysis.

Results and Discussion

Results of deterministic analyses obtained using

the mean values of the variables are presented first.

Then, results showing the effects of uncertainties are

presented.

4
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Determini_fiq Analyses

The deformed shape of the finite element model for

a load of 6000 lb is shown in Figure 5. In the figure,

deflections are scaled up by a factor of 10 for

visualization purposes. The joint undergoes significant

bending•

Figure 5. Deformed shape of the lap shear joint

obtained using a geometrically nonlinear analysis.

The manner in which the total strain energy release
rate GT varies with F2 (the square of the applied load F)

is shown in Figure 6. Results for both a linear and a

geometrically nonlinear analysis are shown. For
perspective, the bounds for the two failure modes -

fracture of the adhesive and yield of the strap - are also
shown. The value of F2 corresponding to yield of the

strap is given by (t I O'yield)2. A discussion of the results

from the linear and nonlinear analyses is presented
below.

s

0"

f

6
e-

..c

4

Fracture

GT >-G,,
#

--- Linear ,-" j
--Nonlinear ," /

, , , I .... I .... J .... I

0 1 2 3 4x 10 7

F 2, lb2

Yield

F2 > (fi x cyield) 2

Figure 6. Total strain energy release rate GT as a

function of the square of the applied load. Failure
bounds are also shown.

Linear analysis. The forces and displacements X',
Y', u', and v' on the right sides of equations (3) and (4)

are linear with respect to the applied load F. The total

strain energy release rate Gr is calculated from the sum

of the products of these quantities and hence is

proportional to F2. Thus, the results shown in Figure 6

for the linear case are expected.

Nonlinear ianalysis. At first glance, the nonlinear

analysis curve in Figure 6 appears to be a line with a

slope different from the slope of the linear analysis
curve. Since that is not a reasonable conclusion, further

studies were undertaken to examine the nonlinear

solution in detail. The results shown in Figures 7 and 8

provide the explanation.

In Figure 7, the derivative of G T with respect to F2

(the slope in Fig. 6) is plotted as a function of the

applied load F. Note that for the linear case the
derivative is a constant, while for the nonlinear case the

derivative is not a constant. The derivatives for the

linear case and nonlinear case are the same at F= 0, but

the derivatives differ for other values of F. Figure 8

provides a more dramatic contrast between the linear

and nonlinear analyses. In this figure, the second
derivative of GT with respect to F 2- is plotted as a

function of the applied load F. For the linear case, the
second derivative is zero for all values of the load F.

For the nonlinear case, the second derivative is

relatively large near F = 0, then drops by three orders of

magnitude near F= 2000 lb. The computational
techniques used for calculating derivatives of GT are

discussed in Appendix C.

dGr

d( F 2)

xl0 7
2.5

2.0

1.5

1.0

,5 --

0

°°e°°OOoqimoooo °
Iol•o•ioooo•oot

- -- Linear Analysis
• Nonlinear Analysis

I I I

1000 2000 3000

Applied Load, F, lb

Figure 7. Derivative of Gr with respect to F 2.

0

-2

d2Gr -4

d(F2) 2
-6

-8

-10
0

x l0 -13

F---_ Nonlinear Analysis

I I I
1000 2000 3000

Applied Load, F, lb

Figure 8. Second derivative of GTwith respect to F2.
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Based on the results presented in Figures 7 and 8,

the nonlinear analysis curve in Figure 6 can be

interpreted as follows. At F= 0 the slope of the

nonlinear analysis curve is equal to the slope of the line
for the linear solution. For values of F between zero

and 2000 lb, the slope of the curve becomes smaller as

the joint straightens and stiffens. The nonlinear

analysis accounts for that straightening and stiffening.
During straightening, GT is not linear with respect to

F2. For values of F greater than about 3000 Ib, GT is

nearly linear in F 2 with a slope that is smaller than that

calculated from the linear analysis. In summary, the

geometrically nonlinear analysis accounts for the joint

rotation, straightening, and stiffening, while the linear

analysis does not account for these phenomena.

Because of the scale, the progress of the rotation,

straightening, and stiffening cannot be seen in Figure 6,

but the changes can be seen clearly in Figures 7 and 8.

Analysis with Uncertainties

Two distinctly different approaches for treating

uncertainties are used - probabilistic and possibilistic.

The effects of a geometrically nonlinear analysis and
the effects of two failure modes - fracture of the

adhesive and yield of the strap - are also considered.

First, the convergence for a Monte Carlo simulation and

a technique for greatly reducing computational effort

are presented. Then, results are presented for various

combinations of probabilistic and possibilistic analysis,

linear and nonlinear analysis, and fracture and yield

failure modes. (The headings for each of these sections

have the following format: method(s) for handling the

uncertaintics, failure mode(s), type(s) of analysis.)

Finally, probabilistic and possibilistic results are

presented for a nonlinear analysis with a combination of
both failure modes.

Convergence and Fracture Failure. The primary

method that was used to study the effect of
uncertainties was Monte Carlo simulation (MCS).

Convergence of the Monte Carlo calculations was

evaluated using 100, I000, and 5000 trials and by

comparing results from a Monte Carlo simulation with

results from a first order reliability method (FORM).

Results for 100, 1000, and 5000 trials arc given in
Table 2+ Results are shown for both linear and

nonlinear finite element analyses. In Table 2, the

applied load used in the linear analysis was 5000 Ib; for

the nonlinear analysis the applied load was 6000 lb.

(The loads in Table 2 arc different for the linear and

nonlinear analyses because the objectives of the

analysis are to evaluate convergence in the center

portion of each curve.) Based on these results, MCS

with 5000 trials was considered to be adequate for the

studies presented in this paper. Note that the objective

was to obtain convergence in the center portion of each

curve. If the emphasis were on an accurate

representation of data in the tails, a larger number of

trials would have been required.

Pr_babilistic. Fracture. Linear and Nonlinear. As

previously mentioned, for the linear case the total strain
energy release rate G T varies linearly with respect to F 2.

That is,

Gr = kF2 (6)

where k is a constant. Also, for the nonlinear case, G T

is nearly linear in F2 for large values of F. This fact

can be used to significantly reduce the computational

resources required to produce curves such as those

shown in Figure 9. In this figure, the probability of

failure from fracture of the adhesive is plotted as a

function of the applied load F for both a linear and a

nonlinear analysis. Each curve was obtained using

scaling of individual trials in a Monte Carlo simulation

(n = 5000) that was carried out at a single value of the

load F. The details of the scaling technique are

presented in Appendix A. For the linear curve, the

single value of the load F was 5000 lb; for the nonlinear

curve, the single value of the load F was 6000 lb.

Results obtained using FORM are included in this

¥

Analysis
Type

Linear

Nonlinear

Table 2. Convergence study of Monte Carlo simulation

Load, Ib
Probability of Failure by Fracture of Adhesive

Monte Carlo Simulation

n=100 n=1000

5000 0.515 0.511

6000 0.772 0.763

FORM
n=5000

O.483 0.483

0.764 O.756

6
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1.00[- Linear _ Linear Nonlinear
_' | _ MCS _ 9" _ Probability -o- Probability

--, .75[- • Form _ E -'•-- Possibility --e,- Possibility

/ Nonlinear _ ; _ 1.00
.5o}- -o- MCS d

/
_ "2510_o_J-"° _', , , , _'_ "50f

3000 4000 5000 6000 7000 :_ .25

Applied Load, F, ib
,.C
O 0 I _ I

Figure 9. Probability of failure by fracture of the d_ 3000 4000 5000 6000 7000
adhesive. Applied Load, F, Ib

figure to confirm the accuracy of the scaling technique.
Excellent agreement is obtained between the two sets of
results.

Figure I 1. Possibility and probability of failure caused
by fracture of the adhesive for both a linear and a
nonlinear analysis.

Possibilistic and Probabilistic. Fracture. Linear.

Figure 10 shows the possibility and probability of
failure of the joint by fracture of the adhesive for a

linear finite element analysis. Here and elsewhere in

this paper, for a given load the possibility of failure is

always greater than the probability of failure. Also note
that, for this case, the possibility of failure is 1.00 when

the probability of failure (pf) is 0.50. The probability of

failure pfreaches 0.50 when the load F is 5015 lb. In

the next section, this value is compared with the value

obtained using a nonlinear analysis.

It Probability / ] dr
I+ Possibility / ',

• .50

d_ 3000 4000 5000 6000 7000

Applied Load, F, lb

Figure 10. Possibility and probability of failure by
fracture of the adhesive for a linear analysis.

Pos_ibilistic _nd Probabilistic. Fracture, Linear and

Nonlinear. Figure II shows the possibility and

probability of failure of the joint caused by fracture of

the adhesive using both linear and nonlinear finite

element analyses. Compared with the curves for the

linear analysis, the curves for the nonlinear analysis are

shifted to thc right. For a nonlinear analysis with

pf= 0.50, the load F is 5709 lb. Rceall from the
previous section that the linear analysis predicts a value

of 5015 lb. According to these results and the results

presented in Figure 6, a nonlinear analysis predicts that

the .joint can carry more load than a linear analysis -

i.e., a linear analysis is more conservative. Further

studies carried out in this paper are based on a nonlinear

finite element analysis.

Possibilistic and Probabilistic. Material Strength.

Figure 12 shows the possibility and probability of

failure of the joint by material strength failure of thc

strap (stress G greater than yield stress _vield). These

results are based on equation (5) and do not require a
finite element analysis. For/?;= 0.50, the value of the

load F is 5500 lb, which is less than the value of

P.

22

z

d:

--U-
.00 -

Probability

.75 _-.,n--Possibility /

 -o-o-6 i
.25 - I

6000 7000

Applied Load, F, lb

Figure 12. Possibility and probability of material
strength failure of thc strap.

7
American Institute of Aeronautics and Astronautics



5709lb forthenonlinearfracturefailuremodegivenin
theprevioussection.Theresultsshowninfigures10-
12areconfirmedin figure6 whichshowsthat,fora
nonlinearanalysiswithmeanvaluesof theuncertain
parameters,materialstrengthfailureoccursat a lower
loadthanfracturefailure;for a linearanalysiswith
meanvaluesof theuncertainparameters,fracture
occursatalowerloadthanmaterialstrengthfailure.

Possibilistj¢, Fr_fture and Material Strength.

Nonlinear. Figure 13 shows the possibility of failure of

the joint by fracture of the adhesive (solid line) and by

material strength failure of the strap (dashed line). The

possibilistic failure envelope that considers both failure

modes is the maximum of the possibilities of the two

failure modes. (In the general case, the possibility

1.00 1 Cffj--,-- Fracture t--- Siren;i/, _ y

!75

.50

"; .25
"_ .

, AjI ,l I _ I

. 4000 5000 6000

Applied Load, F, lb

I

7000

Figure 13. Possibility of failure by material strength
and by fracture of the adhesive, plotted individually.

of failure is the maximum of the possibilities of all the

failure modes.) In this case, the possibilistic curve that
considers both failure modes starts at a = 0 (point A)

with the fracture possibilistic curve - the solid line. It

follows that line up until the line crosses the strength
possibilistic curve - the dashed line - at about c_ = 0.75

(point B). There, thc possibilistic curve that considers

both failure modes shifts to the strength possibilistic

curve (line BC) because, for that value of the applied

load F, failure by material strength of the strap has a

higher possibility than failure by fracture of the

adhesive. In a possibilistic approach for handling

uncertainty, if a failure mode does not have the

maximum possibility for some value of the applied

load, it has no effect on the possibility of failurc. In

contrast, in a probabilistic approach for handling

uncertainty, secondary failure modes do affect the

probability of failure, as discussed below.

Probabilistic, Fracture and Material Strength,

Nonlinear. Figure 14 shows the probability of failure of

the joint by fracture of the adhesive and by material

strength failure of the strap. Three curves are shown.

The first curve (filled circular symbols) is for failure of

the joint by fracture of the adhesive. The second curve

(filled triangular symbols) is for material strength. The

third curve (open square symbols) is for either of the
two failure modes or both modes - i.e., the third curve

is the union of the two failure events. In the

probabilistic approach for calculating the probability of

failure caused by a combination of the two failure
modes, both failure modes have an effect on the

probability of failure, not just the more critical mode.

This phenomenon can be seen in Figure 14, where the
third curve is to the left of either of the two curves for

the individual failure modes - i.e., the third curve

indicates a higher probability of failure than either of
the other two curves.

1.00 [-- Fracture I_
_' |---,_ Strength r_7

3000 4000 5000 6000 7000

Applied Load, F, Ib

Figure 14. Probability of failure by material strength
and fracture, plotted individually and in combination.

The effect of two failure modes on the probability of

failure is indicated mathematically as

p/X_Y) = pj (x) + ps(Y) -pj4xc_Y) (7)

where X indicates failure by the first failure mode and Y

indicates failure by the second failure mode. Finally, if
there were additional failure modes, the curve that

accounts for all modes would shift further to the left.

That is, for a given load, that curve would indicate a

higher probability of failure than the cu_'es for any of
the individual failure modes.

8
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Probabilistic and Possibilis_ic, Fractur._tand

Material Strength, Nonlinear. The results of the study

are summarized in Figure 15, which shows the

possibility and probability of failure of the joint by

fracture of the adhesive and by material strength failure

of the strap. Both curves are for a geometrically

nonlinear analysis. Thc possibilistic curve shows the

change in slope where the maximum possibility shifts

from fracture of the adhesive to material strength failure

of the strap. The possibility of failure becomes 1.0 at a

load F of 5500 lb. The probability of failure at that

load is 0.66. (In previous calculations presented in this

paper, the possibility of failure becomes 1.0 when the

probability of failure is 0.50. The combination of two

failure modes causes that pattern to change.) The

probability of failure is 0.50 at a load F of 5405 lb. For
all values of the load F, the possibility of failure is

greater than the probability of failure.

1.00

.75

• .50
O

.25
LE

3000

Probability

,_. _. z._ _. _. ,7._.___._-: : -. ___- __,m I _ I m I

4000 5000 6000 7000

Applied Load, F, Ib

Figure 15. Possibility and probability of failure by
combined material strength and fracture.

Discussion of Probabilistic and Possibilistic Methods

Based on the discussions in the previous three

sections, the following contrasts can be drawn between

probabilistic and possibilistic methods. Suppose a

structure has many failure modes any of which can

cause the structure to fail - i.e., the structure is a series

system. (The single lap shear joint with two failure

modes is an example of a series system.) In a

probabilistic analysis the probability of failure increases

with each failure mode considered. In contrast, in a

possibilistic analysis the possibility of failure increases

only if a failure mode is introduced that has a larger

possibility of failure than any other failure mode, For

example, suppose that the structure is a chain of

identical links. The probability of failure increases with

increasing chain length. The possibility of failurc

remains the same regardless of chain length. As a

result, for multiple failure modes a possibilistic analysis

may become unconservative.

Using the same reasoning, a possibilistic approach

could exhibit unexpected behavior for a structure with

redundancies - i.e., a parallel system. Thc probability

of failure of the structural system is reduced as the

redundancy is increased. In contrast, the possibility of

failure of the structural system is equal to the possibility

of failure of the component having the largest

possibility of failure - regardless of the number of

redundancies. As a result, for redundant systems a

possibilistic approach is conservative. An excellent in-

depth discussion of probabilistic versus possibilistic

methods is presented in Reference 1 I.

Possibilistic approaches for treating uncertainties

may be viable for early design. But it is not clear that

possibilistic approaches are superior to probabilistic

approaches for early design. For example, whereas the

number of function evaluations for a possibi!istic

analysis may be small compared with a Monte Carlo

simulation, the number of function evaluations may be

comparable to that required by some probabilistic

methods such as FORM. These probabilistic methods

can provide more information than possibilistic

methods. Furthermore, even though the possibility of

failure was always greater than the probability of failure

lbr the bonded joint example with two failure modes,

the assumption that possibilistic design is conservative
is not a valid assumption when there arc many failure

modes. In many cases, the choice of methods depends

upon the availability of data. Finally, the choice of

methods depends upon the designer - how familiar he
is with the characteristics of both the methods and the

design problem.

Concluding Remarks

This paper has explored the effects of
configurational and material uncertainties on the

strength of a single lap shear joint. Finitc element

analyses were used to study the joint. Both
probabilistic and possibilistic approaches for

accounting for uncertainties werc studied, and results

from the two approaches are compared. The effects of

a geometrically nonlinear analysis and two failure

modes are presented. A computational technique for

speeding the calculation of the probability of fracture

failure at various loads is presented.

Geometrically nonlinear analyses are essential for

accurately predicting the response of the single lap

shear joint and its fracture failurc mode. The joint
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beginstostraightenoutandstiffenatalowload.This
phenomenoncanbc prcdictedwith a geometrically
nonlinearanalysis,butit cannotbepredictedwitha
linearanalysis.A geometricallynonlinearanalysis
predictsthatthejoint cancarrymoreloadthanis
predictedbyalinearanalysis.

Fora linearanalysis,thestrainenergyreleaserates
areproportionaltothesquareoftheappliedload.Fora
geometricallynonlinearanalysis,the strainenergy
releaseratesarealmostproportionaltothesquareofthe
appliedloadforlargevaluesoftheappliedload.These
characteristicsmakeit possibleto employscalingto
substantiallyreducecomputationaleffort.

Possibilisticapproachesfor treatinguncertainties
maybeviableforearlydesign.Butit isnotclearthat
possibilisticapproachesaresuperiorto probabilistic
approachesforearlydesign.
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Appendix A. Monte Carlo Simulation and Scaling of
Strain Energy Release Rate

Monte Carlo simulation involves carrying out a

large number of numerical experiments, or trials, with

random values of the quantities that are Selected to be
random variables. In the trials, the randomness of each

random variable is guided by the statistics specified for

that variable - e.g., type of distribution, mean, and
standard deviation.

In the present study, for each Monte Carlo trial a

statistically independent configuration of the lap joint is

created from the random values of the input variables.

A finite-clement model is developed for that

configuration and a finite element analysis is performed
to calculate the total strain energy release rate GT.

In a given trial, if the calculated value of GT

exceeds the experimentally determined critical value
G C, the configuration is considered to have "failed".

For example, if the total number of trials in a simulation

is 5000 and if there arc 3000 failures, then the

probability of failure is 0.6 for this specific load.

Suppose the first Monte Carlo simulation is

conducted with F = Fo. In the general case, in order to

obtain the probability of failure for a different load Fs,

the Monte Carlo simulation would have to be repeated

for the new load value. However, by utilizing the fact

that GT is linear with respect to F2, it is possible to

substantially reduce the computational effort. For each

trial, the value of Gr, for all loads F= F#, can be

calculated by scaling the value of GT calculated for

F = Fo. The scaling is carried out in the following way:

tFo)
(A1)

The value of GT obtained through scaling for each

trial is compared with the corresponding value of Gc.

The number of failures are counted to calculate the

probability of failure for the current load, F= F_.

Hence, it is sufficient to perform the Monte Carlo

simulation only once for an arbitrary load. The
probability of failure for any other load can be

calculated by scaling GT for each specific trial.

In the present study, scaling of GT" is used to

calculate the probability of failure for both linear and

nonlinear finite element analyses.

Appendix B. Calculating with Membership.Functions

Let a be a parameter that indicates the possibility

of an uncertain quantity taking on a given value. The
parameter _ takes on values between zero and one. A

value of zero indicates no possibility, while a value of

one indicates maximum possibility. A membership
function describes the relationship between _ and the

possible values of the uncertain quantities. An example

of a membership function is shown in Figurc 3. In a

possibilistic analysis, each of the uncertain quantities

that contribute to the response is defined in terms of a

membership function. The objective of the possibilistic

analysis is to determine the corresponding membership

function of the response quantities. The membership

functions of the response quantities can then bc

compared with the membership functions for the

allowable responses to determine the possibility of
failure.

A simple example is used to illustrate how to

perform calculations using membership functions.

Consider the cantilever beam shown in Figure B I. The
tip deflection 5 is given by

5 = -- (B I)
3El

where P is the load at the tip, L is thc length, E is

Young's modulus, and I is the moment of inertia.

Assume that L and I are uncertain quantities with

membership functions similar to thai shown in Figure
B2. The vertical scale is the possibility, denoted _,
which varies from zero to one. The values of E and P

are taken to be 10 7 psi and 100 Ib, respectively.

P= 1001b

L = 40 in. 1 in.

Figure B 1. Cantilever beam example.

The membership functions for L and I are isosceles

triangles with upper and lower bounds (UB, LB) shown
in Table B 1. The bounds arc for c_ = 0.0, 0.5, and 1.0.

The objective is to obtain an estimate of the uncertainty
in _5by calculating its membership function.
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_" .52E

0
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Figure B2. Example membership function for moment
of inertia I and length L of cantilever beam example.
(Filled circles indicate bounds on I and L corresponding
to _ = 0.0, 0.5, and 1.0.).

To obtain the upper and lower bounds for 6 at

= 0.0, calculate 6 h)r various combinations of L and 1

within their _ = 0.0 bounds and select thc largest and
smallest values. That is, calculate 6 for several

combinations of L and 1 in thc ranges 39.8 < L _<40.2

and 0.64583 < I -< 0.68750. To obtain the upper and
lower bounds for 6 at a = 0.5, calculate 6 for various

combinations of L and I within their ot = 0.5 bounds and

select the largest and smallest values. That is, calculate
6 for several combinations of L and I in the ranges

39.9 < L < 40.1 and 0.65625 < I < 0.67708. The same

approach is used for other values of @. To obtain the

most likely value of 6, which is the value corresponding

to c_ = !.0, use the most likely values of L and I, 40.0

and 0.66667, respectively.

For this simple example it is easy to select the

values of L and I that give thc upper and lower bounds
on 6. The upper bound on 6 is given by a combination

of the upper bound on L and the lower bound on I. The
lower bound on 6 is given by a combination of the

lower bound on L and the upper bound on I.

In general, to calculate the upper and lower bounds on a
response quantity at a given value of a it is necessary to

use _ combinations of values of the independent
variables at that same value of _. These values include

both the bounds and values between the bounds. It

cannot be assumed that bounds on the response

quanti.ties can be !de_nt!fied by considering only the
bounds on the independent variables.

Appendix C. Computational Techniques Used for

Calculating Derivatives of G T

The data for Figures 7 and 8 werc obtained using a
combination of chain rule differentiation and finite

difference approximations. The chain rule

differentiation provided expressions containing
derivatives Of G7 with respect to F rather than F2'-. That

change was made because the values of GT were

calculated at equal increments in F (100 Ib increments)

rather than equal increments in F2. As a result,

multipoint finite difference approximations could be

more accurate for derivatives with respect to F than for
derivatives with respect to k-2.

For example, for Figure 8, chain rule

differentiation provides the following expression

d20r 1 d2GT 1 dG r

d(F2) 2 4F 2 dF 2 4F 3 dF
(CI)

The values of the derivatives on the right hand side in

equation (Ct) were calculated using 4- and 5-point

finite difference approximations. The value of d2GT
d(F 2)-_

at F---70 lb was calculated with a 2-point central

difference formula. The computational tcchnique

described above was most valuable in calculating

d2GT for small values of F where that derivative is
d(F2) 2

changing rapidly.

Table B I. Assumed bounds on independent variables I and L and corresponding
calculated bounds for tip deflcction of cantilever beam example

I in.4 L in. 8 in.

LB UB LB UB LB UB

0.0 0.64583 0.68750 39.800 40.200 0.30567 0.33530
0.5 0.65625 0.67708 39.900 40. i 00 0.31272 0.32752
1.0 0.66667 0.66667 40.000 40.000 0.32000 0.32000
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